Package: KRMM 1.1

KRMM: Kernel Ridge Mixed Model

Solves kernel ridge regression, within the the mixed model framework, for the linear, polynomial, Gaussian, Laplacian and ANOVA kernels. The model components (i.e. fixed and random effects) and variance parameters are estimated using the expectation-maximization (EM) algorithm. All the estimated components and parameters, e.g. BLUP of dual variables and BLUP of random predictor effects for the linear kernel (also known as RR-BLUP), are available. The kernel ridge mixed model (KRMM) is described in Jacquin L, Cao T-V and Ahmadi N (2016) A Unified and Comprehensible View of Parametric and Kernel Methods for Genomic Prediction with Application to Rice. Front. Genet. 7:145. <doi:10.3389/fgene.2016.00145>.

Authors:Laval Jacquin [aut, cre]

KRMM_1.1.tar.gz
KRMM_1.1.zip(r-4.5)KRMM_1.1.zip(r-4.4)KRMM_1.1.zip(r-4.3)
KRMM_1.1.tgz(r-4.4-any)KRMM_1.1.tgz(r-4.3-any)
KRMM_1.1.tar.gz(r-4.5-noble)KRMM_1.1.tar.gz(r-4.4-noble)
KRMM_1.1.tgz(r-4.4-emscripten)KRMM_1.1.tgz(r-4.3-emscripten)
KRMM.pdf |KRMM.html
KRMM/json (API)

# Install 'KRMM' in R:
install.packages('KRMM', repos = c('https://ljacquin.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ljacquin/krmm/issues

On CRAN:

blupgblupgenomic-predictionkernel-methodsmixed-modelsvariance-components-estimation

3.75 score 1 stars 16 scripts 119 downloads 1 mentions 4 exports 11 dependencies

Last updated 2 months agofrom:70c2ca83fd. Checks:OK: 1 ERROR: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 27 2024
R-4.5-winERROROct 27 2024
R-4.5-linuxERROROct 27 2024
R-4.4-winERROROct 27 2024
R-4.4-macERROROct 27 2024
R-4.3-winERROROct 27 2024
R-4.3-macERROROct 27 2024

Exports:em_reml_mmkrmmpredict_krmmtune_krmm

Dependencies:codetoolscvToolsDEoptimRdoParallelforeachiteratorskernlablatticeMASSMatrixrobustbase